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Abstract. We present some exact enumeration data and appropriate Pad6 mimic functions 
for the p dependence of the fraction of sites in finite clusters for the square lattice site 
problem having given valence. In addition, we report Monte-Carlo results on the cor- 
responding quantities for sites in infinite clusters and use these data to investigate the degree 
of ramification of infinite clusters at and above the percolation threshold. 

1. Introduction 

There have been a number of recent attempts to characterise the degree of ramification 
of clusters in random percolation processes by using ‘local’ properties such as the 
cyclomatic index of the cluster (Domb and Stoll 1977, Cherry and Domb 1980, 
Middlemiss et a1 1980) and closely related quantities such as the mean valence of a site 
in the cluster (Middlemiss et a1 1980, Gaunt et a1 1980). In this paper we are concerned 
with more detailed information of the same type, namely the probability that a 
randomly chosen site has given valence. In § 2 we discuss the density dependence of 
these quantities for sites in finite clusters on the square lattice. For densities p < pc ,  the 
critical density, this can be calculated exactly and for p > p c  we use series analysis 
techniques to construct Pad6 mimic functions. In 9 3 we present Monte-Carlo data for 
the distribution of the valences of sites in infinite clusters and show how these data can 
be used to characterise the extent to which the clusters resemble trees. 

2. Finite clusters 

Consider a site percolation process on a lattice with coordination number Q, at density 
p ;  that is, sites on the lattice are occupied, uniformly and independently, with prob- 
ability p.  The valence of an occupied site is the number of occupied sites which are near 
neighbours of this site and we define f? as the fraction of sites in finite clusters having 
valence i. For densities below the critical density, all clusters are finite clusters and 

0305-4470/80/123707 + 06$01.50 @ 1980 The Institute of Physics 3707 



3708 S G Whittington, K MMiddlemiss, G M Torrie and D S Gaunt 

To describe the high-density behaviour of f r  we define C(n,  t, i) to be the number 
(per lattice site) of sites having valence i, in clusters of IE sites having perimeter t. Then 
f ?  is given by 

where q = 1 - p .  We have calculated C(n,  t, i) for n s 16 for the square lattice. The 
expansion in powers of p must agree with equation (2.1) and this gives a useful check on 
the coefficients C(n, r, i). For the high-density branch we expand in powers of q giving 

fF (4 )  = 1-4q2-8q3-7q4+36q5-2q"+256q7-452q8+1068q9 

-7372q1"+216 24qlI-691 9Oql2+. . . 

f;(q) = 4q3 +6q4+20q5 -42q6-96q7 - 164qs+ 56q9+. . . 
f F ( q )  =4q4+4qs+36q6-  36q7+64q8-596q9+. . . 
f y ( q )  = q 4 +  16q6- 16q7+ 104q8-460q9+. . .. 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

As expected, f !  + 1 and fr -+ 0, i > 0, as q + 0 since at sufficiently high densities finite 
clusters will consist of isolated sites. As additional checks, we note that C l f  = 1 and the 
mean valence of sites in finite clusters ( u ) ~  = XI if. The q expansion of ( u ) ~  follows from 
(2.3) to (2.7), and the series so derived agrees with that given by Gaunt et a1 (1980). 

To investigate the valence of sites in an infinite cluster, we define P I ( p )  to be the 
probability that a randomly chosen occupied site with valence i is in an infinite cluster 
and P ( p )  to be the probability that a randomly chosen occupied site is in an infinite 
cluster. If f , ( p )  is the probability that a randomly chosen occupied site has valence i, 
irrespective of whether it lies in a finite or infinite cluster, then 

f y ( q )  -4q2+4q3-4q4-60qs-8q6- 108q7+448q8-68q"+, . . 

f , ( p )  isananalyticfunctionofp (in fact given bytheright-handsideof (2.l)forallp) and 
P ( p )  has a singular point at p E  so that at least one of the functions PI ( p )  must be singular 
at p c .  For p <pc ,  P l ( p )  = 0 ,  V i  and, since typical infinite clusters contain sites of all 
valences greater than zero, we expect that for some values of p ,  P, ( p )  > 0 for all i > 0, so 
that P , ( p )  will be a non-analytic function of p ,  for all i > 0. Since P ( p )  is expected to 
have only one singular point we expect each of the P l ( p ) ,  i > 0,  to be singular at p c .  

If f f ( p )  is the probability that a randomly chosen site in an infinite cluster has 
valence i then 

(2.9) 

Following the arguments of Gaunt et a1 (1980) it is easy to show that, if P ( p )  is 
continuous at p c ,  then f f ; ( p )  is continuous at p c  and either 

f z ( P )  = P ( P ) f X P )  + (1 -P(P) ) f f ; (P) .  

(2.10) 

(2.11) 



Valences of sites in clusters 3709 

One can calculate fF(pc) from (2.1) and these values are quite different from Monte- 
Carlo estimates of f : ( p , )  (Middlemiss et a1 1980) so that we expect that, close to p c ,  
fy(p) will behave as in (2.11). 

We have evaluated a sequence of Pad6 approximants (Gaunt and Guttmann 1974) 
to (2.4) to (2.7) and the results are given in figures 1 and 2, together with the values of 
fy ( p )  calculated from (2.1) for p < p c .  In figure 1, the high-density branch for f: ( p )  is 
taken from the [5/3] approximant and the error bar shown is an estimate of the 
uncertainty at that point derived from the behaviour of the other approximants. The 
value at that point is above fT(pc) calculated from (2.1) so that either f: has a 
discontinuity (which would imply that P ( p )  goes to zero discontinuously as p + p c + )  or, 
more likely, it goes through a maximum between p c  and p = 0.75. For f! ( p )  we show the 
[5/3] and [6/3] approximants which probably represent upper and lower limits on the 

P 

Figure 1. The p dependence of the fractionsf: and f: of sites in finite clusters with valences 
1 and 2. 

I I I I I I 

P 

Figure 2. The p dependence of the fractionsf: and f: of sites in finite clusters with valences 
3 and 4. 
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true behaviour of the high-density branch. This is consistent with continuity at p c  and 
monotonicity above pc. The same behaviour is indicated for fy ( p )  and f y  ( p )  in figure 2 
where we give estimates (with typical error bars) of the high-density branches. For 
f t ( p )  the central estimates are based on the [6/2] approximant, while for f f 5 ( p )  the 
upper and lower limits shown are the [6/2] and [7/2] approximants. 

3. Infinite clusters 

Domb and Cherry (1980) have used series expansion data on finite clusters to deduce 
information about infinite clusters through an equation analogous to (2.9). Instead we 
use a Monte-Carlo technique to obtain information on the value of f f  ( p )  for a series of 
finite lattices and attempt to extrapolate to the infinite lattice case. Middlemiss et a1 
(1980) have carried out similar calculations, but concentrated on the behaviour of the 
percolating cluster at p c .  Here we present data for a range of p values above the 
percolation threshold. 

In figure 3 we give the extrapolated values of f f ( p )  for p > p c .  The Monte-Carlo 
approach becomes inefficient above p = 0.9 but we have derived the first few terms in 
the q expansions of ff. These can conveniently be obtained by considering holes in an 
otherwise completely filled lattice of N sites and taking the h i t  N -+ CO. For instance, 

f i ( q ) =  lim {N(1-q)N+N(N-5)q(1-q)N-*+[4N(N-8)+2N(N-9) 
N - t w  + i N ( N  - 1O)(N - 13)]q2(1 - q ) N - 2  + . . .} 

x { N ( 1 - q ) N [ 1 + ( N - l ) q + ~ N ( N - l ) q 2 + .  * .I}-* 
= 1 - 4q + 6q2 + 0 ( q 3 ) .  

Similarly, 

f :  (4) = 4q - 12q2 + 0 ( q 3 )  

f t  ( 4 )  = 6q2 + 0 ( q 3 )  

f :  ( q )  = 4q3 +w4). 
and 

(3.1) 

(3.4) 

As q + 0 f i  and f t  approach zero with zero slope, f i  approaches zero linearly and f i  
approaches unity linearly. Indeed f i  and f i  have limiting gradients of the same 
magnitude but opposite sign. The other interesting feature of figure 3 is the maximum 
exhibited byf:. This can be understood qualitatively by considering the holes created in 
an initially filled lattice as q increases. At first most holes will be separated and their 
neighbouring sites will have valence three. At higher q, the probability of clusters of 
holes increases and an increasing fraction of the neighbouring sites will have lower 
valence so that f ;  will start to decrease. 

The detailed valence data can be used to characterise the extent to which the infinite 
cluster is tree-like in a way analogous to Domb’s use of the cyclomatic index. Consider 
a cluster of n sites, ni of which have valence i. For the case of direct interest here, where 
the maximum valence is four, it is easy to show that 

fils 2n4+ n 3 + 2  (3.5) 
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I 

P 

Figure 3. The p dependence of the fraction f: (i = 1 , 2 , 3 , 4 )  of sites with valence i in the 
infinite cluster. 

where the equality holds if and only if the cluster is a tree. For an infinite cluster it is 
convenient to define 

p ( p ) =  (2fi +f: -f:)l(af: +f:) (3.6) 
which is zero for a tree and has a maximum value of unity. can be regarded as a 
‘compactness’ parameter, analogous to Domb’s parameter A. From (3.1) to (3.4) we 
obtain 

(4) = 1 - 2q3 + 0(q4)  (3.7) 

as the small-q behaviour. Our estimate of the p dependence of p is shown in figure 4. As 
p decreases p decreases, as expected, but p ( p , )  is about 0.8; that is, the infinite cluster 

0 6  0 7  08 0 9  10 
P 

Figure 4. The p dependence of the compactness parameter / . ~ ( p ) .  
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becomes more tree-like as p decreases but is still far from being a tree even at p c .  This is 
in qualitative agreement with the conclusion of Cherry and Domb (1980) that about 
26% of the possible cycles are present at p c  for this system. 

4. Conclusions 

Perhaps the most interesting aspect of this work concerns the degree of compactness of 
the infinite cluster. If the infinite cluster were ramified close to p c  we would expect f i  to 
be large and f: to be close to 2 f i  +f:. In fact, fi and f\ are very similar at p c  and fi is 
close to fi but much smaller than f:. It thus appears that on this local scale the 
compactness decreases as p decreases, but the infinite cluster is not especially ramified 
at p E .  Other ways of characterising the infinite cluster (e.g. the dependence of the 
perimeter on the cluster size (Hankey 1978), the radius of gyration (Stauf€er 1978) and 
the relative ‘thickness’ of the shortest walk spanning the cluster (Middlemiss et a1 1980) 
suggest that it is ramified at p c  but these properties are in a sense more global. Domb’s 
coefficient of compactness, A ,  can be related through the average valence of a site in the 
infinite cluster to a combination of theff and seems therefore to be a characterisation of 
the compactness, intermediate between the local one adopted in this paper and the 
global ones referred to above. The degree of ramification depends on the definition of 
‘ramified’! 

Acknowledgments 

The authors would like to thank M Bersohn for a helpful discussion. This work was 
financially supported by grants from NSERC of Canada and NATO. 

References 

Cherry R J and Domb C 1980 ,I. Phys. A: Math. Gen. 13 1325 
Dornb C and Stoll E 1977 J. Phys. A: Math. Gen. 10 1141 
Gaunt D S and Guttmarin A J 1974 Phase Transitions and Critical Phenomena vol. 3 eds C Domb and M S 

Gaunt D S, Middlemiss K M, Torrie G and Whittington S G 1980 J. Phys. A: Math. Gen. 13 3029 
Hankey A 1978 J. Phys. A: Math. Gen. 11 L49 
Middlemiss K M, Whittington S G and Gaunt D S 1980 J .  Phys. A: Math. Gen. 13 1835 
Stauffer D 1978 Phys. Rea. Lett. 41 1333 

Green (New, York: Academic) p 181 


